Forest Reference Level 2018-2025 Dominica

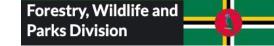
Forestry, Wildlife and Parks Division

2022


Decision 1/CP.16, paragraphs 70 and 71 The Cancun Agreements

70. Encourages developing country Parties to contribute to mitigation actions in the forest sector by undertaking:

- Reducing emissions from deforestation
- Reducing emissions from forest degradation
- Conservation of forest carbon stocks
- Sustainable management of forests
- Enhancement of forest carbon stocks



71. Requests developing country Parties to develop the following elements:

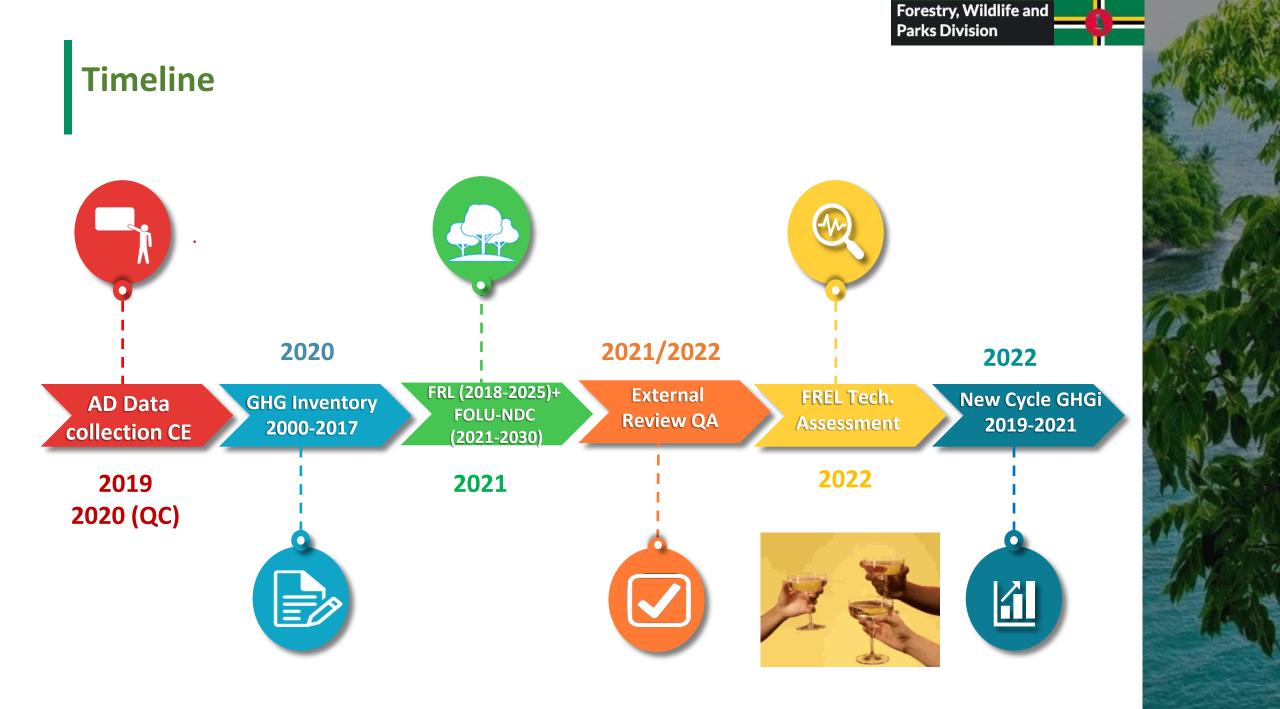
00 • • • A national forest A system for providing A robust and reference emission A national strategy or transparent national information on how level / A national forest forest monitoring the safeguards are action plan reference level being addressed system

71. Requests developing country Parties to develop the following elements:

A national strategy or action plan

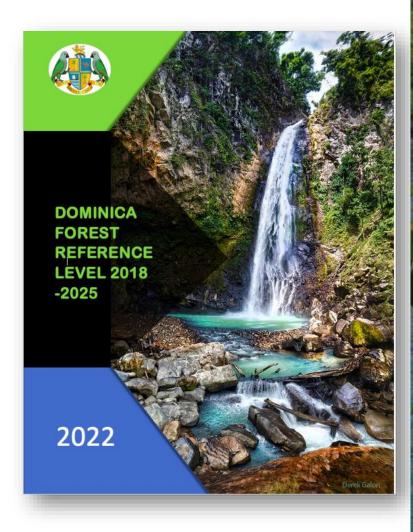
WORKING ON IT

A national forest reference level


A robust and transparent national forest monitoring system

 $\overline{\mathbf{O}}$

A system for providing information on how the safeguards are being addressed


• • •

Dominica Forest Reference Level 2022

- In January 2022, Dominica submitted their first Forest Reference Level to the UNFCCC.
- The current national FRL proposed by Dominica is the **net balance** of greenhouse gas (GHG) emissions and removals in Forest lands remaining forest lands undergoing natural and assisted regeneration, as well as lands converted to Forest Lands after hurricane Maria in 2017.
- The analysis is done at national level, following the Gain-Loss method proposed in the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for National GHG inventories, and implementing a country-specific excel calculation tool.
- All lands were considered as managed.
- It includes the pools above-ground biomass, below-ground biomass, dead organic matter, and soil organic carbon.

Activities selected in Dominica

Conservation

Refers to the areas of forest lands remaining forest lands under the Protected Areas System. Conservation also includes, as stated in the National Land Use Policy and Plan, any areas identified as sensitive zones for natural resources management that are considered as "specially conserved areas". The priority of the system of protected areas is to effectively manage forests to conserve the natural biodiversity and function, and contributes to the sustainable socio-economic development, resilience and well-being of all citizens and users. However, since hurricane Maria in 2017, these areas were significantly affected and now these are prioritized for natural regeneration.

Sustainable management of forest

Refers to the areas of forest lands remaining forest lands under management strategies, within the Protected Areas System, in particular in the two forest reserves (Central Forest Reserve and Northern Forest reserve). Since hurricane Maria in 2017, these areas are prioritized for restoration, rehabilitation, and reforestation activities. Sustainable management of forest also refers to restoration, rehabilitation, and reforestation activities on farmlands and unallocated state lands.

Enhancement of forest carbon stock

Refers to lands converted to forest lands, and lands utilizing agroforestry practices that enhance forest carbon pools.

Activities selected in Dominica

Dominica aims at achieving full consistency among its FOLU-GHG inventory, REDD+, its FOLU-NDC and other national reports. Therefore, the FRL is developed using the IPCC structure: Forest lands remaining forest lands, and forest lands converted to and from other lands. Hence, the approach selected is a land-based approach, instead of an Activity-based approach. In this way, Dominica is able to monitor all land use dynamics, even if not all of them are included as REDD+ activities and ensure environmental integrity. Emissions and removals are accounted in both the historical and FRL period using the Gain-Loss method (IPCC 2006, V4, Ch2)

Associated REDD+ Activity	Source Category (IPCC Structure / GHG Inventory / NDC)
Conservation	Forest land Remaining Forest Land, disturbed, under management for natural regeneration.
Sustainable management of forest	Forest land remaining forest land, disturbed, under management for assisted regeneration.
	Croplands converted to Forest Land
	Grasslands converted to Forest Land
Enhancement of C Stocks	Wetlands converted to Forest Land
	Settlements converted to Forest Land
	Other lands converted to Forest Land

Activities not selected in Dominica

Deforestation, was defined as forest lands converted to other lands (croplands, grasslands, wetlands, settlements, and other lands) and **Forest degradation**, was defined as Forest land remaining forest land affected by human disturbances (logging and fires) and natural disturbances (hurricanes).

Different to most of the other FRELs/FRL submitted by other countries, Dominica has found it complex to include these two activities because in 2017 Dominica lost about 90% of their forest cover in the forest lands due to the hurricane Maria. Thus:

- Since 2018, Dominica had to fully restructure to meet the new needs that raised posthurricane. National strategies, efforts, budget and staff has been mostly allocated to restoring the forest lands, instead of avoiding deforestation or degradation.
- It is complex to estimate emissions from deforestation or degradation post-disturbance in the temporary unstock areas. We currently don't have data on emission factors associated to this new mixed forest and there are no IPCC values/methods that can represent this specific circumstance.

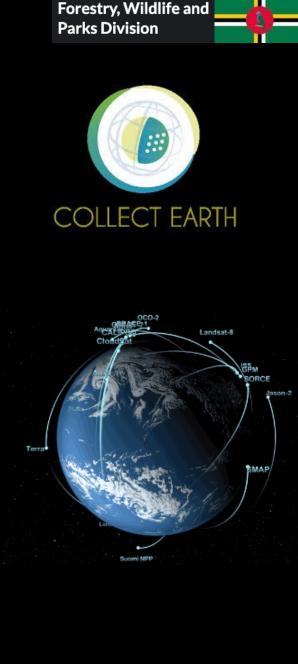
Activities not selected in Dominica

Even though this new scenario for deforestation and degradation if complex and with many uncertainties, Dominica will monitor all land use dynamics. These two activities will be monitored as:

Associated REDD+ Activity	Source Category (IPCC Structure / GHG Inventory / NDC)
Degradation	Forest land Remaining Forest Land, disturbed by logging, fires, natural disasters and shifting cultivation.
	Forest converted to Croplands
	Forest converted to Grasslands
Deforestation	Forest converted to Wetlands
	Forest converted to Settlements
	Forest converted to Other lands

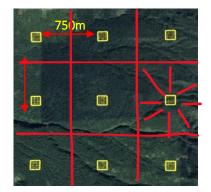
Decision 4/CP.15 Methodological guidance for activities deforestation, degradation, conservation, sustainable management of forest and enhancement of carbon stocks

systems



The information on Activity Data (AD) used was obtained from land use and landuse change assessment, which was conducted on the basis of a **sampling approach** (IPCC approach 3) using Collect Earth.

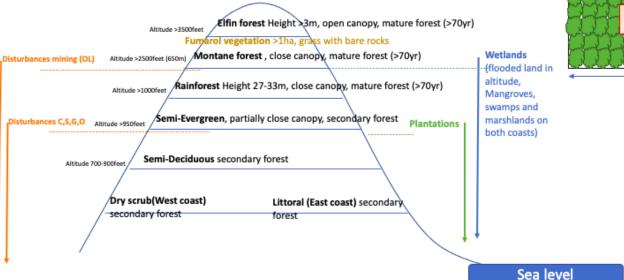
Forest land was stratified by forest type (Montane Forest -Elfin, Cloud montane, Montane Rainforest-, Seasonal Forest -Semi-Evergreen, Semi-Deciduous-, Littoral Evergreen, Dry Scrub). Croplands are reported as annual and perennial crops. Grasslands and Settlements are reported as Woody and Non-Woody. Wetlands do not have further sub-classification and Other lands divided in Other Lands and Mining.

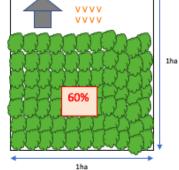


National grid: a 750m by 750m national systematic grid consisted of 1605 sampling plots of 1Ha was selected. These sampling points were visually evaluated annually from 2000 to 2017.

Plot Size: The size of the plot was decided to be 1Ha, to allow consistency with the Forest definition. This, along with the samples, 49 of them, facilitated counting the percentage of land use cover

Distance among plots: Dominica planned to use a high sampling intensity, balancing country size, representatives of the samples, time and interpreters availability. As a result, a sampling of 750m by 750 m was selected





Forest Type	Predominantly m.a.s.l	Location
Dry Scrub	0-200	West
Littoral Evergreen Forest	0-200	East
Seasonal Decidious	200-300	
Seasonal Semi Evergreen	300-400	
Montane – Rainforest	400-700	Concentric rings around the island
Montane – Cloud Forest	600-900	
Montane – Elfin forest	900>	

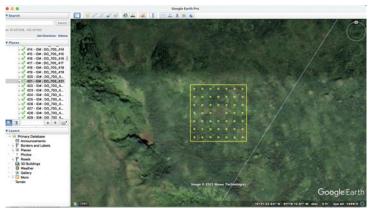
Disturbances: - Grazing - Logging

- Logging - Landslides - Mining (quarry) - Earthquakes

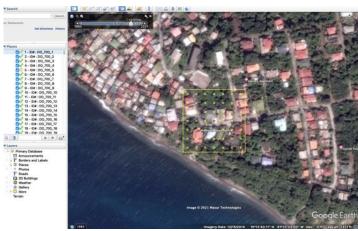
Natual Disturbances:

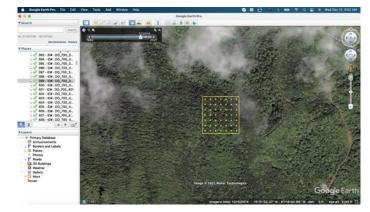
Hurricane

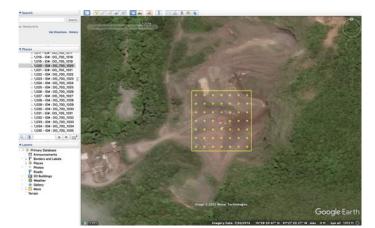
- Fire

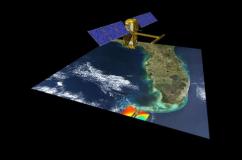

- Settlement
- Crops : Annual and tree crops (citrus, Bananas, Cocoa)

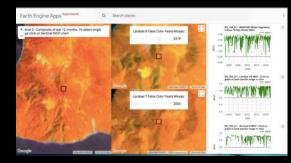
NB: mangroves area are too small to enter the forest definition, therefore they are included in the Wetland category.


Changes. In sensitive areas, it is required to have at least 1,5 acres of land to be allowed to build


Elfin forest

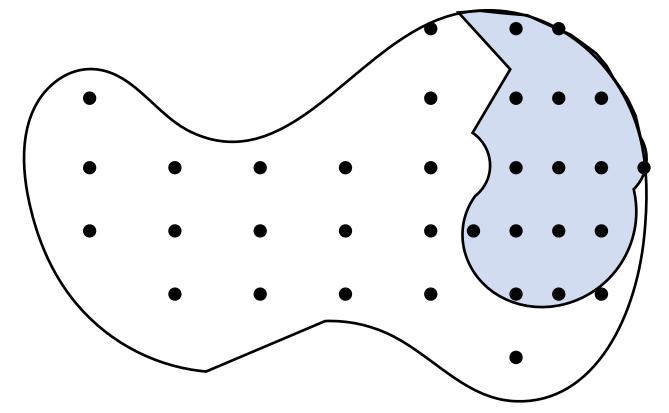

Urban areas

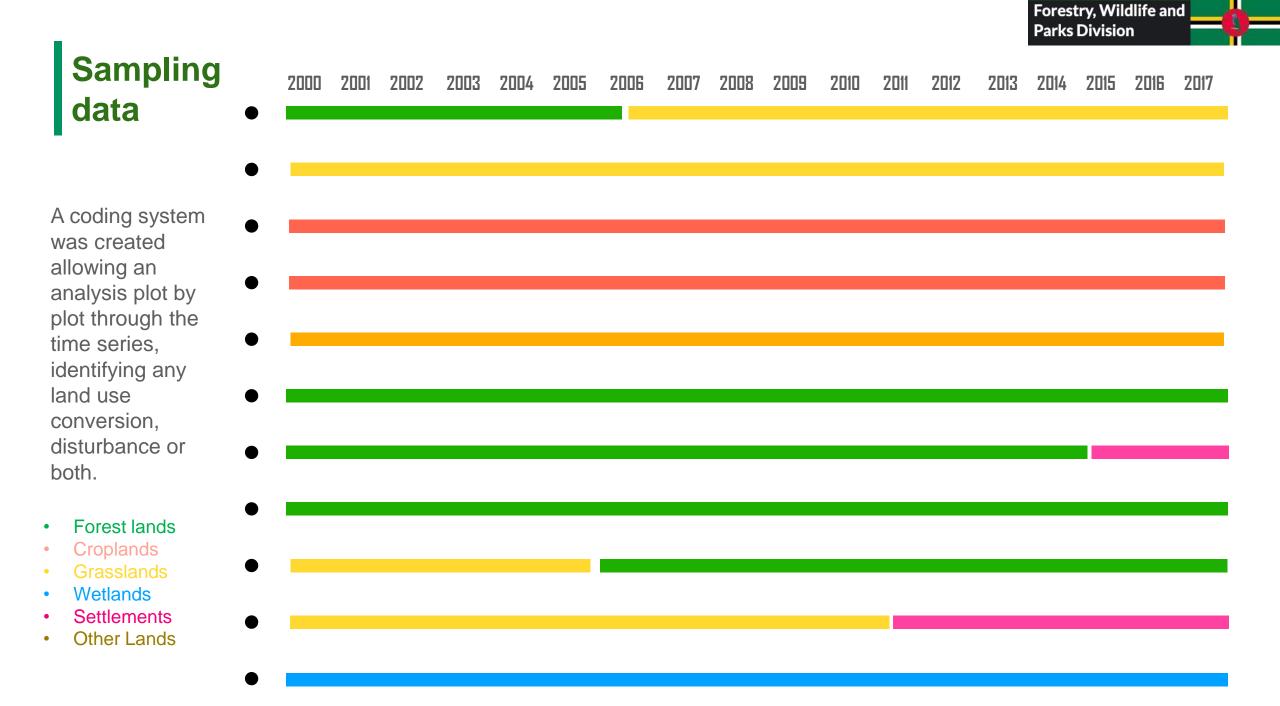

Cloud montane



Other Lands

Collect Earth software contains a combination of high and medium spatial resolution imagery (i.e. 15 m resolution Landsat imagery, 2.5 m resolution SPOT imagery and high-resolution imagery from several other sources) accessible through the Google Earth, Bing Maps and Google Earth Engine platforms

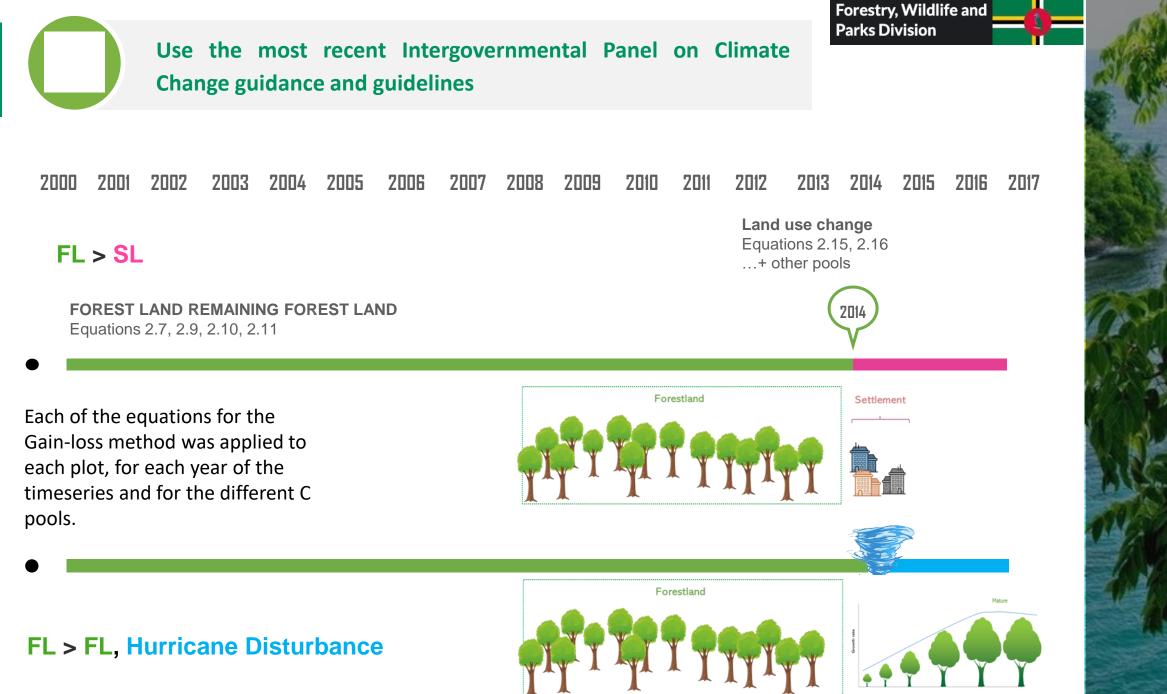



Identify drivers of deforestation and forest degradation

Example on how the data was used

Sampling design: systematic

Expansion factor: calculated diving the total surface of the country (75000 Ha) by the total number of plots of the grid (1605 plots), equal to 43.76 Ha; meaning that each 1Ha plot represents an area of 43.76 ha, area that is distributed surrounding the plot.



The plot level information can be used to construct land use and land use change matrices and/or disturbance matrices. In this structure, the information on land use and disturbances is separated.

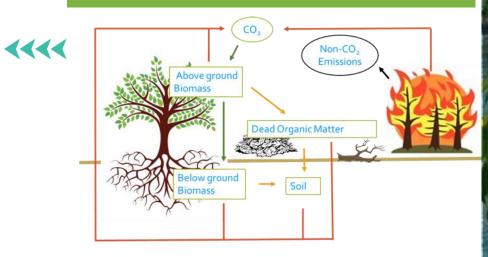
	Forest land	Cropland	Grassland	Wetlands
Forest land				
Cropland				
Grassland				
Wetlands				

Land use change Matrix

Use the most recent Intergovernmental Panel on Climate Change guidance and guidelines

Forestry, Wildlife and Parks Division

1. Activity Data


Historical land representation of the land use and land use change dynamics using Collect Earth Desktop

To estimate GHG emissions and removals two variables are needed Activity Data and Emission factors

Emission/Removal = AD x EF

2. Carbon stocks (Emission Factors)

The information on Emission Factors (EFs) was obtained from default values of the 2006 IPCC Guidelines, 2019 Refinement to the 2006 IPCC Guidelines, and from the National Forest Inventory from Saint Lucia (2009), as both islands share the same forest types, and no recent Forest inventory has taken place in Dominica

TRANSPARENCY

Institutional Arrangements

DOMINICA - FOLU Greenhouse gas inventory, Forest Reference Emission Level / Forest Reference Level REDD+, REDD+ and NDC MRV calculation tool

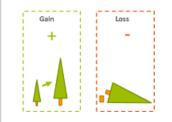
Date			Jan-22	
Version	[V1	
Institution	DMston / Pepartment	lame	E-mail	Role (Data Provider/Data ArchMing/ QA/AC/Inventory Prep)
Ministry of Environment, Rural Modernisation and Kalinago Upliftment	Forestry, Wildlife and Parks Division	Minchinton Burton	directorforestr y@dominica.g ov.dm	Director Forestry, Wildlife and Parks Division - Coordinator
Ministry of Environment, Rural Modernisation and Kalinago Upliftment	Forestry, Wildlife and Parks Division	Bradley Guye	guyeb@domini ca.gov.dm	Technical Lead, Activity Data Collection for LULUC 2000- 2018, GHGi Preparation, Documentation, QC, Archives.
Ministry of Environment, Rural Modernisation and Kalinago Upliftment	Forestry, Wildlife and Parks Division	Machel Sulton	machelsulton @hotmail.com	Activity Data Collection for LULUC 2000-2018, GHGi Preparation, Documentation, QC, Archives.
				Activity Data Collection for

COMPLETNESS

Gases and carbon pools included

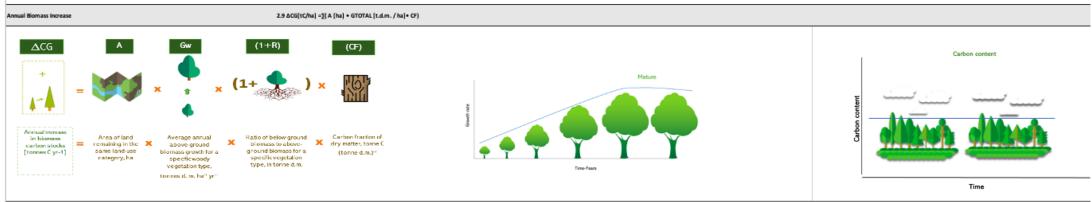
	-		ools and ga									
LANDS												
	ABG	BGB	Litter	DW	SOC							Notation Key
RBON POOLS INCLUDED	x	x	x	x	x	_						NA NOTAPLICABLE
												NE NO ESTIMATED
GASES INCLUDED	CO2	CH4	N2O	HFC	PFC	SF6	NF3	NOx	SO2	COVNM	со	NO NOTOCCUR
GASES INCLUDED	х	x	x	NA	NA	IE INCLUDED ELSEWHERE						
NDS												
						_						
RBON POOLS INCLUDED	ABG	BGB	Litter	DW	SOC							Notation Key
	x	x	x	х	x							NA NOTAPLICABLE
								1		,,		NE NO ESTIMATED
GASES INCLUDED	CO2	CH4	N2O	HFC	PFC	SF6	NF3	NOx	SO2	COVNM	со	NO NOTOCCUR
	x	x	x	NA	NA	IE INCLUDED ELSEWHERE						
ANDS												
	486	D.C.D.	1.144.0.7	DW	SOC							
RBON POOLS INCLUDED	ABG	BGB	Litter	DW								Notation Key
	x	x	x	x	x							NA NOTAPLICABLE
	CO2	CH4	N2O	HFC	PFC	SF6	NF3	NOx	SO2	COVNM	со	NE NO ESTIMATED NO NOT OCCUR
GASES INCLUDED	x	x	X	NA	NA	IE INCLUDED ELSEWHERE						
	^	^	^	100	100	115	114	110	104	110	11/2	IE INCLUDED ELSEWHERE
NDS												
	ABG	BGB	Litter	DW	SOC							Notation Key
RBON POOLS INCLUDED	x	x	x	x	x							NA NOTAPLICABLE
												NE NO ESTIMATED
	CO2	CH4	N2O	HFC	PFC	SF6	NF3	NOx	SO2	COVNM	со	NO NOTOCCUR

ACCURACY


Emissions Factors, Uncertainties

	Informat	ion											
	Parameter	Unit	National Class		Selected Value	Countr	y Value	Default Value			Unc	ertainty	
neral						T3	T2	T1					
bal Warming Potential for CH ₄	GWPCH ₄	Mg CO ₂ -eq (Mg CH ₄) ⁻¹			28			х	$U_{inf}(\widehat{CF}) = \frac{1}{2}$	$\frac{\widehat{CF} - p_{2.5}}{\widehat{CF}} * 100$	$U(\widehat{CF}) = \frac{1/2IC_{\widehat{CF}}}{\widehat{CF}}$		$=\frac{Z_{\frac{\alpha}{2}} * s(\overline{G})}{\overline{G}w}$
al Warming Potential for N ₂ O	GWPN2O	Mg CO ₂ -eq (Mg N ₂ O) ⁻¹			265			х	-	ĈF + 100	$U(CF) = -\frac{1}{CF}$	100 U(Gw)	$= \frac{2}{\widehat{Gw}}$
						Data and par		D . f h M . h					
ameter in the IPCC equations	Notation	Units according to the IPCC		Category	Value	National Value (tier3)	National Value (tier 2)	Default Value (tier 1)	Error o ra	nge reported	Lower Cl	Upper Cl	SD
orest Land													
			Elfin and Cloud forest	FCLOUD	0.47			х	(0.4	4 - 0.49)	0.44	0.49	
			Montane Rainforest	FRAIN	0.47			х	(0.4	4 - 0.49)	0.44	0.49	
d carbon fraction of dry matter	Cf	[t C (t d.m.) ⁻¹]	Semi-evergreen Forest	FEVER	0.47			х	(0.4	4 - 0.49)	0.44	0.49	
			Deciduous - Coastal Forest	FDEC, FDRYS, FLIT	0.47			х	(0.4	4 - 0.49)	0.44	0.49	
			Elfin and Cloud forest	Undisturbed	0.00			х					
				Disturbed (Hurricane, fire, logging, Shift.Cult)	4.40			х	s	D:1.6			1.6
			Montane Rainforest	Undisturbed	0.00			х					
age annual ABG growth for a specific woody		feders had us d1		Disturbed (Hurricane, fire, logging, Shift.Cult)	5.90			х		D: 2.3			2.3
tation type	Gw	[t d.m. ha-1 yr-1]	Formi oursers on Format	Undisturbed	2.70			х		D:1.1			1.1
			Semi-evergreen Forest	Disturbed (Hurricane, fire, logging, Shift.Cult)	5.20			х	1	D: 2.5			2.5
				Undisturbed	1.60			х	Si	D:1.1			1.1
			Deciduous - Coastal Forest	Disturbed (Hurricane, fire, logging, Shift.Cult)	3.90			х	S	D:2.4			2.4
			Elfin and Cloud forest	Natural	0.221			х	SD	: 0.036			0.036
of below ground biomass to above ground	R		Montane Rainforest	Natural	0.221			х	SD	:0.036			0.036
Step 4. AD-PlotSu	Im Step 4. LU	C Matrices Step	5a. NFI Biomass (new	v) Step 5b. Plots _ SOC	Step 6. EF-Va	lues	Forest La	inds	Croplands	Grassland	Wetlands	Settlements	Ot

COMPARABILITY


IPCC Methodologies

4.2.1 Annual change in carbon stocks in biomass in Forest land remaining Forest Land (Gain-Loss Method) 2.7 ΔCB = ΔCG – ΔCL

∆C ₈ =	ΔC_{G}	- ∆C ∟		
Gain-Lorr	Method	requirer	tha	hic

The Gain-Loss Method requires the biomass carbon loss to be subtracted from the biomass carbon gain. Annual change in carbon stocks in biomass in land remaining in a particular land-use category (gain-loss method)

ເບ_ເບດ	Parameter	Code (from AD-Database & AD-Plot Sum)	Pool / Item	Note	Units	
FF_Undisturbed_Gains	ΔCG_1	FF/FEVER	ABG + BGB	IPCC 2006, Eq. 2.9	t C / yr	
FF_Undisturbed_Gains	ΔCG_2	FF/FDEC	ABG + BGB	IPCC 2006, Eq. 2.9	t C / yr	
FF_Undisturbed_Gains	ΔCG_3	FF/FRAIN	ABG + BGB	IPCC 2006, Eq. 2.9	t C / yr	
FF_Undisturbed_Gains	ΔCG_4	FF/FUT	ABG + BGB	IPCC 2006, Eq. 2.9	t C / yr	
EE Hadisturbad Galar	A/G 5	cc/ncroi ib	Nort ± octo	1000 TODE En 7 0	+ C ver	
Step 4. AD-PlotSum	Step 4. LUC Matrices	Step 5a. NFI Biomass (new)	Step 5b. Plots _ SOC Step 6. EF-Values	Forest Lands Cropland	Grassland	Wetlands Settlements Ot

CONSISTENCY

Time series consistency for AFOLU - GHG Inventory

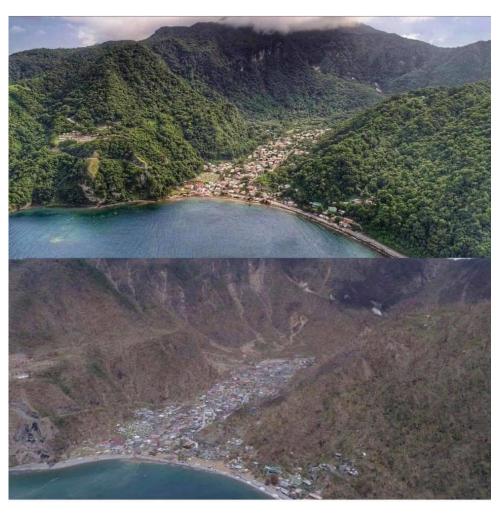
National GHG Inventory Totals

IPCC				Tr	atal GNG Emic	sions and Remov			4 N201200	0-2018	Total GHG	Emissions	and Permova		∎q) [CO2, CH	M N201 20	02018				
Code	Source Category	Source Subcategory	C pool (Gases 10			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
3.B L	and		CO2	2 .	-111 -11	1 -111	-111	-111	-93	-78	-106	-106	-106	-106	-87	-43	-96	-56	-18	-92	20,189
3.B.1	orest Land		CO ₂	2 -	-111 -11	1 -111	-111	-111	-110	-110	-110	-110	-110	-110	-110	-109	-138	-110	-92	-137	20,108
3.B.2	Tropland		CO	2	0 0	0	0	0	7	1	1	1	1	1	11	2	34	3	3	3	30
3.B.3	Brassland		CO	2	0 0	0	0	0	6	1	1	1	1	1	1	7	2	32	60	32	8
3.B.4	Wetlands		CO	2	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.B.5	ettlements		CO2	2	0 0	0	0	0	5	30	2	2	2	2	10	57	6	12	8	9	9
3.B.6	Other Land		CO ₂	2	0 0	0	0	0	0	0	0	0	0	0	0	0	0	8	1	1	34
	Aggregate Sources and Non-CO2				0 0	0	0	o	0	0	0	0	o	0	o	o	o	0	o	0	o
	missions Sources on Land			4 & N2O																	
	imissions from Biomass Burning		CH4	4 + N ₂ O	NO N	D NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Other Harvested Wood Products																				
5.0.1	IN YEARS HOLD FLODICS		CO3	2	NE N	IE NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	d Table (IPCC 2006) Source Category	Source Subcategory	C pool Ga		otal GHG Emis	sions and Remov 01 2002	als (Gg CO2- 2003	eq) [CO2, CH 2004	14, N2O] 20 2005	00-2018 2006	Total GHG 2007	Emissions : 2008	and Remova 2009	ls (Gg CO2- 2010	eq) [CO2, CH 2011	14, N2O] 20 2012	00-2018 2013	Total GHG	Emissions a CH4, N 2015	nd Remova 20] 2000 - 2016	
3 /	Agriculture, Forestry, and Other	Land Use					1						:								
3.B	Land		CO2	2	-110.6	-110.6 -110.6	-110.6	-110.6	-92.5	-78.2	-106.0	-106.0	-106.0	-106.0	-87.0	-43.1	-96.0	-55.8	-18.4	-91.5	20,188
3.B.1 F	orest Land		CO ₂	2	-110.6	-110.6 -110.6	-110.6	-110.6	-110.1	-110.1	-110.1	-110.1	-110.1	-110.1	-109.7	-109.3	-138.3	-110.5	-91.5	-137.0	20,107
	orest Land Remaining Forest and (undisturbed)		CO ₂	2	-110.6	-110.6 -110.6	5 -110.6	-110.6	-110.1	-110.1	-110.1	-110.1	-110.1	-110.1	-109.7	-109.3	-109.3	-108.9	-107.7	-107.4	-0.
	orest Land Remaining Forest and (disturbed)		CO ₂	2	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.7	-0.5	20,107
	and Converted to Forest Land		co;	-	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-29.0	-1.5	-15	-29.0	0
	and Converted to Forest Land	Cropland Converted to Forest Land	00		0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	-29.0	-15	-15	-15	1
3.B.1.b.ii I	and Converted to Forest Land	Grassland Converted to Forest Land	0		0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	-27.5	-0
	and Converted to Forest Land	Wetlands Converted to Forest Land	00		0.0	0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	c
	and Converted to Forest Land	Settlements Converted to Forest Land	0		0.0	0.0 0.0			0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
	and Converted to Forest Land	Other Land Converted to Forest Land	0		0.0	0.0 0.0			0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
	Cropland		CO		0.0	0.0 0.0			7.3		0.7	0.7	0.7	0.7		2.4	34.1		3.2	3.2	
3.B.2.a (ropland Remaining Cropland		CO ₂	2	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
	and Converted to Cropland		CO2		0.0	0.0 0.0	0.0		7.3	0.7	0.7	0.7	0.7	0.7		2.4		3.2	3.2	3.2	29
	and Converted to Cropland	Forest Land Converted to Cropland	CO;		0.0	0.0 0.0			7.3	0.7	0.7	0.7	0.7	0.7		2.4		3.2	3.2	3.2	29
	and Converted to Cropland	Grassland Converted to Cropland	0		0.0	0.0 0.0			0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0
	and Converted to Cropland	Wetlands Converted to Cropland	00		0.0	0.0 0.0			0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0
	and Converted to Cropland	Settlements Converted to Cropland	0		0.0	0.0 0.0			0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0	0
	and Converted to Cropland	Other Land Converted to Cropland	0		0.0	0.0 0.0			0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0	0
	Graceland		0	-	0.0	0.0	0.0	0.0	5 5	0.0	0.0	0.0	0.0	0.0	0.0	22	10	21.6	60.2	32.0	
• •	Step 6. EF-Valu	Jes Forest Lands	Croplan	nds G	Grassland	Wetlands	s Se	ttlements	Oth	er Lands	RES	OLTS GH	IG 2000-2	018	Hist 20	00-2017, I	FRL 2018-	2025	Hist 20	00-2017,	NDC 20

Consistency GHG Inventory / REDD+ / NDC

REDD+ activity

GHG Emissions and removals

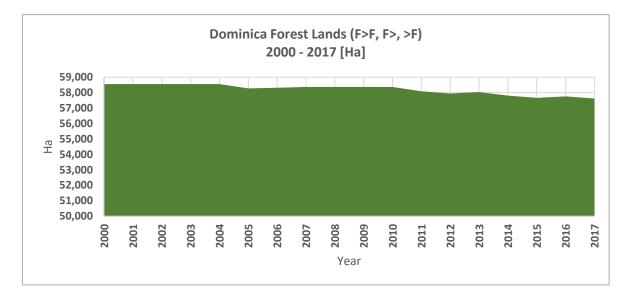

s credits	-	OLU sector are not based on reducing e n actions by the country are sold in carb	emissions and enhancing removal oon market and the ownership ch		2030 will also depened										
								Land Use Only							
	Category	Sub-category	Carbon Pool	Gas	Units	Equation	Note	2000	2001	2002	2003	2004	2005	2006	
	Forest land	ing Forest Lands (Undisturbed)	AGB, BGB, DOM, SOC	CO2, CH4, N20	t CO2e / yr			-110,612	-110,612	-110,612	-110,612	-110,612	-110,079	-110,079	
	Forest land	Forest remaining Forest lands (Undisturbe	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.7		-110,612	-110,612	-110,612	-110,612	-110,612	-110,079	-110,079	
	Forest land	F >F (Undisturbed) (Gains)	Biomass (AGB+BGB)	C02	t CO2e / yr	Equation 2.9	Take from Forest land sheet	-107,337	-107,337	-107,337	-107,337	-107,337	-107,337	-107,337	
	Forest land	F>F before conversion to C [Gains]	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.9	Take from C sheet (F before conversion)	-914	-914	-914	-914	-914	-736	-736	
	Forest land	F>F before conversion to G [Gains]	Biomass (AGB+BGB)	C02	t CO2e / yr	Equation 2.9	Take from G sheet (F before conversion)	-1,371	-1,371	-1,371	-1,371	-1,371	-1,193	-1,193	
	Forest land	F>F before conversion to W [Gains]	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.9	Take from W sheet (F before conversion)	0	0	0	0	0	0	0	
	Forest land	F>F before conversion to \$ [Gains]	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.9	Take from S sheet (F before conversion)	-812	-812	-812	-812	-812	-635	-635	
	Forest land	F>F before conversion to O (Gains)	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.9	Take from O sheet (F before conversion)	-178	-178	-178	-178	-178	-178	-178	
	Forest land	F >F (Undisturbed) [Losses]	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.11		0	0	0	0	0	0	0	
	Forest land	F >F (Undisturbed) (DOM)	DOM	CO2	t CO2e / yr	Equation 2.23	Take from Forest land sheet	0	o	0	0	0	0	o	
	Forest land	F >F (Undisturbed) (SOC)	SOC	CO2	t CO2e / yr	Equation 2.24		0	o	0	0	o	o	o	
	Forest land	Forest remaining Forest lands	AGB, BGB, DOM, SOC	CO2, CH4, N20	t CO2e / yr			0	0	0	0	0	0	0	
	Forest land	Forest remaining Forest lands (Disturbano	Biomass (AGB+BGB)	C02	t COZe / yr	Equation 2.7	Take from Forest land sheet		0						
	Forest land	F >F (Disturbance) (Gains)	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.9		0	0	0	o	o	0	0	
	Forest land	F >F (Disturbance) Losses	Biomass (AGB+BGB)	CO2	t CO2e / yr	Equation 2.11		0		0	0	0	0	o	
	Porest land	P >P (Disturbance) coses	biolitass (Adamada)	002	1 0020 / 91	Equation 2.11			Ů	0	•	•	0	•	

Adjusting for national circumstances

2017 before

Dominica acknowledges Decision 4 CP/15, paragraph 7. where "developing country Parties in establishing forest reference emission levels and forest reference levels should do so transparently taking into account historic data"; thus, an annual historical analysis from 2000 to 2017 of GHG emissions and removals for Forest land remaining Forest lands undisturbed, Forest land remaining Forest lands disturbed by human (fires and logging) and natural events (hurricanes), and conversions to and from Forest Lands is included.

However, only as complementary information, because historical data does not represent the future expected conditions; therefore, Dominica is adjusting for national circumstances, as also indicated in the same decision (4 CP/15, p7).


2017 after

Forest lands use and forest land use change 2000-2017

The land use and land use change analysis indicated that total area of forest lands in 2000 was 58.551 Ha compared to 57.710 Ha in 2017, resulting in a forest loss of 888 Ha in 17 years of about 52Ha per year, locating Dominica in a high forest cover low, deforestation country.

In the period 2000-2017, 280 Ha of forest were converted to croplands, 327 Ha converted to Grasslands, 280 Ha converted to Settlements and 94 Ha converted to Other lands

		AREA CHAN	GE [HA]		
	2000	2005	2010	2015	2017
Elfin and Cloud forest	7,056	7,056	7,056	7,009	7,009
Montane Rainforest	28,411	28,411	28,364	28,271	28,271
Semi-evergreen Forest	10,514	10,514	10,514	10,374	10,280
Deciduous Forest	7,056	7,009	7,009	6,963	6,963
Dry Scrub Forest	1,916	1,822	1,822	1,636	1,636
Litoral Forest	3,598	3,598	3,598	3,551	3,551
Total	58,551	58,411	58,364	57,804	57,710

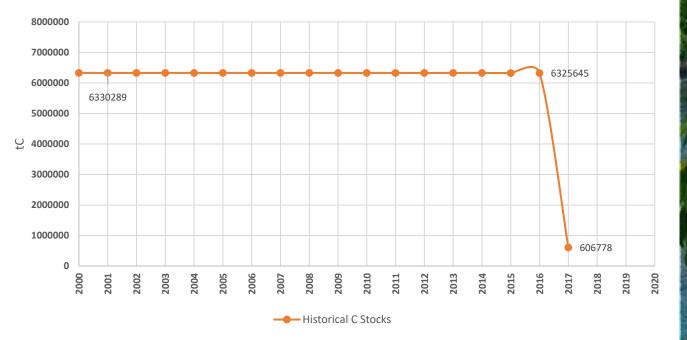
Forest Degradation 2000-2017

Fires, Logging and hurricanes were assessed through the time series.

No fires or logging were visualized in forests. This is mainly due to the high-protection level in forest lands in Dominica. Fires usually occur in grassland areas.

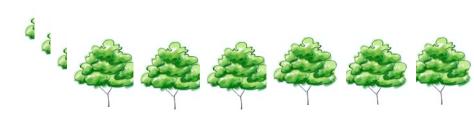
The analysis indicted that the major degradation occurred due to a tropical storm in 2015 and a hurricane category 5 in 2017. In this last hurricane, almost all forest were severely affected, removing most of the canopy cover and in some cases uprooting trees, causing also floods and landslides.

Because of the magnitude of this event, it was considered not appropriated to exclude the C emissions/removals or areas affected by natural disturbances, as applied in other countries.


Forest Degradation 2000-2017

Forest land remaining Forest land (Disturbed)		Forest Type	# plots	Variable	Source	Unit	2015	2016	2017	2018
F>F Disturbed	A_1	FF/FELF/Hurricane_2017	42	Area	Collect Earth	ha	1962.6	1962.6	1962.6	1962.6
F>F Disturbed	A_2	FF/FCLOUD/Hurricane_2017	108	Area	Collect Earth	ha	5046.7	5046.7	5046.7	5046.7
F>F Disturbed	A_3	FF/FRAIN/Hurricane_2017	603	Area	Collect Earth	ha	28177.6	28177.6	28177.6	28177.6
F>F Disturbed	A_5	FF/FEVER/Hurricane_2017	218	Area	Collect Earth	ha	10186.9	10186.9	10186.9	10186.9
F>F Disturbed	A_6	FF/FEVER/Shifting Cultivation_2015	1	Area	Collect Earth	ha	46.7	46.7	46.7	46.7
F>F Disturbed	A_7	FF/FDEC/Hurricane_2015	1	Area	Collect Earth	ha	46.7	46.7	46.7	46.7
F>F Disturbed	A_8	FF/FDEC/Hurricane_2017	148	Area	Collect Earth	ha	6915.9	6915.9	6915.9	6915.9
F>F Disturbed	A_9	FF/FDSCRUB/Hurricane_2017	35	Area	Collect Earth	ha	1635.5	1635.5	1635.5	1635.5
F>F Disturbed	A_11	FF/FLIT/Hurricane_2017	76	Area	Collect Earth	ha	3551.4	3551.4	3551.4	3551.4

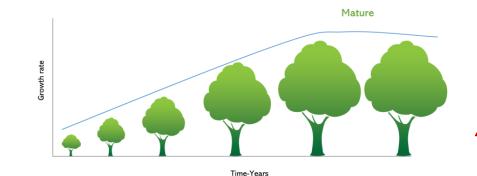
It was estimated that by 2017 Dominica had 57,710 ha of forest lands from which 57,477 ha were affected by hurricane Maria


Historical C stocks in Forest lands 2000-2017

After Hurricane Maria in 2017, the land use assessment indicated that depending on the location and forest type, about 85% to 95% of the forest was lost. Therefore, despite a historical annual analysis of GHG emissions and removals was developed, it cannot be used as benchmark. This means, that from an estimated 6.3 million tC of stock in the forest previous to the hurricane, it went down to approximated 600,000 tC of stock. Historical C Stocks in Forest lands (2000 - 2017) [tC]



As a result, all previous conditions to 2017 do not apply. Therefore, from 2018, forest lands present new conditions due to the loss of the majority of the forest cover. The country considers fundamental to build the reference level based on the post-hurricane conditions in 2018; particularly, considering the remaining forest cover area, which was about 15% to 25% compared to 2017 before the hurricane


Historical C stocks in Forest lands 2000-2017 + Post- Hurricane

Previous C Stock: 6.3 million *Full C Stock (tC) = total Area *(AGC+BGC)*

After hurricane C Stock: 600,000 tC C Stock loss due to Disturbance (tC) = total Area *(AGC+BGC)* fd

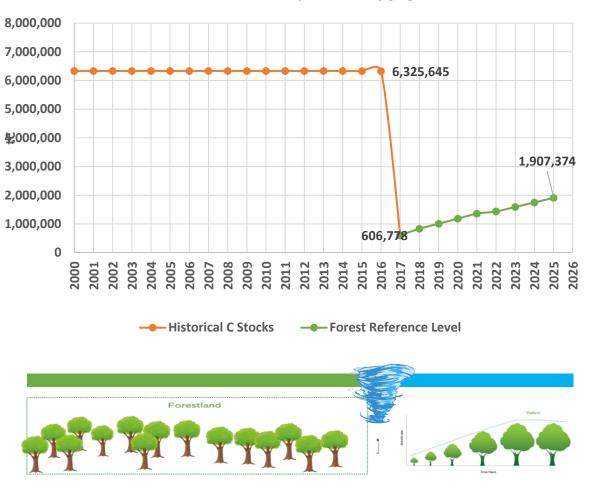
Expected Recovery gains: -648,028 tCO2e /yr (FRL) Annual removals added to previous C stock

Historical C stocks in Forest lands 2000-2017

Historical GHG emissions and removals average 1,101,680 tCO2e from 2001 to 2017. However, this average does not represent future expected emissions and removals dynamics, because previous to the hurricane, Dominica was a net sink with an average of -90,940 tCO2e removals (average 2001-2016).

It is because of the hurricane Maria 2017, where emissions were approximated 20 million tCO2e, that Dominica resulted with more emissions than removals.

In addition, as these emissions and removals were based on a forest that does not exist anymore as it was known, and the post-hurricane conditions are different, the historical average cannot be used to represent the expected future GHG emissions or removals.


Year	Net balance emissions and removals [tCO2e]	Net balance emissions and removals in F>F (undisturbed) [tCO2e]	Net balance emissions and removals in F>F (disturbed) [tCO2e]	Net balance emissions and removals in land converted to F [tCO2e]	Net balance emissions and removals in F converted to other land uses [tCO2e]	
2001	01 -110,612 -11		0	0	0	
2002	-110,612	-110,612	0	0	0	
2003	-110,612	-110,612	0	0	0	
2004	-110,612	-110,612	0	0	0	
2005	-97,787	-110,079	0	0	12,291	
2006	-80,606	-110,079	0	0	29,473	
2007	-105,128	-110,079	0	0	4,951	
2008	-105,128	-110,079	0	0	4,951	
2009	-105,128	-110,079	0	0	4,951	
2010	-105,128	-110,079	0	0	4,951	
2011	-90,377	-109,723	0	0	19,346	
2012	-49,053	-109,266	0	0	60,213	
2013	-97,396	-109,266	0	-29,031	40,901	
2014	-60,511	-108,911	0	-1,541	49,941	
2015	-23,274	-107,718	17,744	-1,541	68,240	
2016	-93,085	-107,439	-545	-29,014	43,913	
2017	20,183,601	-279	20,107,923	203	75,754	
Average	1,101,680	-103,266	1,183,831	-3,584	24,699	

Dominica Forest Reference Level 2018-2025

After the hurricane, some forest areas started to regenerate naturally; in other forest areas, restoration, rehabilitation, and reforestation projects have been necessary, for which the Government has drafted multiple projects to support and enhance the forest recovery. As a result, the selected baseline considers only the expected C removals due to post-disturbance forest regrowth as natural regeneration starting in 2018, along with the expected C removals of lands converted to forest lands, using the historical average, calculated as -648,028 tCO2 e /yr.

Therefore, Dominica will use the post-hurricane C stock of 606,778 tC as benchmark for assessing the country's performance in implementing the activities referred to in decision 1/CP.16, paragraph 70

Historical C Stocks in Forest lands (2000 - 2017) and Forest Reference Level (2018 -2025) [tC]

Potential MRV Needs

- Peer Review through the FOLU Workcrew (addition of Dominican team to workcrew)
- Support to develop institutional arrangements & capacity
- Public Awareness on REDD+ Process
- Baseline MRV Assessment/ Capacity Building Assessment (with Dominica as newest MRV country member)

THANK YOU