

Greenhouse Gas Abatement Cost Model (GACMO)

GHG Mitigation Modelling Tools Webinar Series 2023

Caribbean Cooperative Measurement, Reporting and Verification Hub (CCMRVH)

31st May 2023

Dr Aiymgul Kerimray

Mitigation Specialist

Mitigation Analysis and Data Management

aiymgul.kerimray@un.org

UNEP Copenhagen Climate Centre

What is GACMO

Model GACMO = Greenhouse gas Abatement Cost Model

Bottom-up modelling tool for greenhouse gas emissions based on Excel

IPCC / CDM Methodologies

Developed by Jørgen Fenhann at UNEP CCC

Available for free on the UNEP CCC website GACMO tool - UNEP-CCC (unepccc.org)

GACMO is a simple tool

The tool should be able to make Business As Usual (BAU) projection to:2025/2030/2035/2050

GACMO can make a NDC with a reduction of a percentage reduction of the GHG emission compared to the BAU.

The tool should be able to calculate the GHG reduction and the cost for each mitigation option compared to the technology used in the baseline.

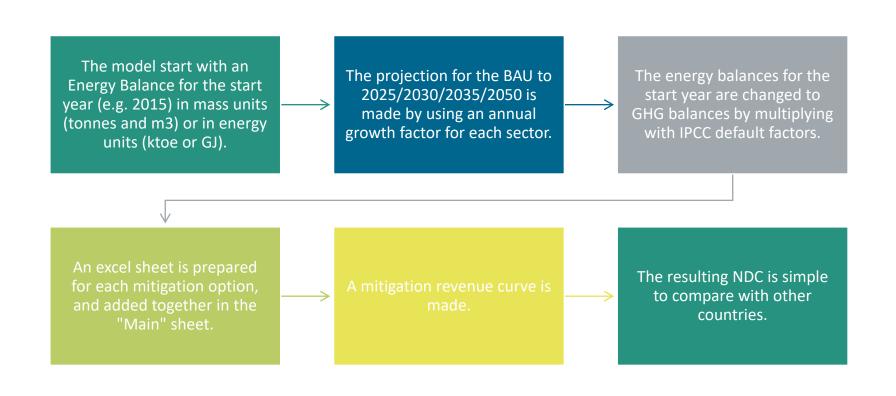
The tool should be able to scale the size of the mitigations option up and down.

The tool should give a clear overview of the total mitigation effort: total GHG reduction, total investment, and total annual cost.

The calculation should be transparent and easy to follow.

Use of GACMO

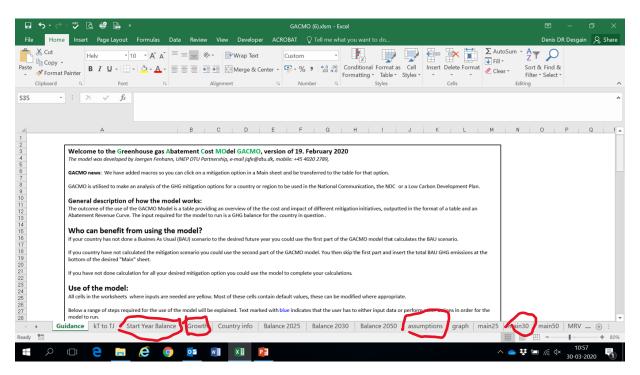
The first version of GACMO was developed 25 years ago for Zimbabwe, when I was living down there.

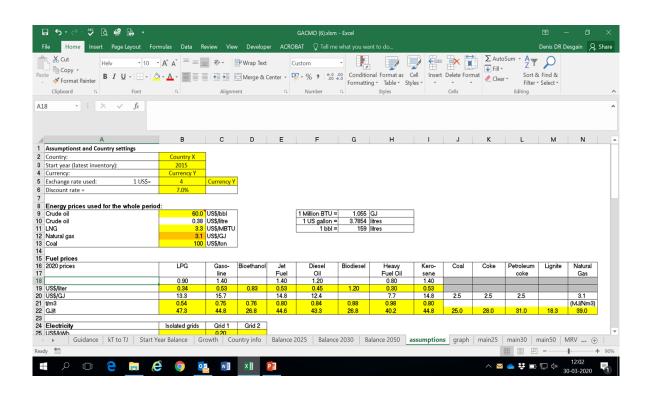

GACMO has been used by several countries to make an analysis of the GHG mitigation options for their country to be used in the National Communication: Colombia, Makedonia, Albania, Ghana, Sao Tome and Principe, etc.

GACMO has been used to make Low Carbon Development Strategies, e.g. by the Maldives

GACMO has been used by some countries to make their NDCs: e.g. Eritrea, Afghanistan, Maldives, Djibouti, Sri Lanka, Myanmar, etc.

GACMO has been used in regional low carbon studies: "Zero Carbon Latin America, A Pathway for Net Decarbonisation of the Regional Economy by mid-century". We have now with UNEP in Panama and Walter Vergara updated this study for the transport and power sectors in Chile.


Steps to develop GACMO model


Input data requirements

- GHG emissions inventory by sectors (latest available year).
- Energy Balance (same year as GHG emissions inventory year).
- Emission factors by fuels for fuel combustion sectors (if national emission factors are available).
- Growth rates of energy consumption by sectors (annual % change up to 2025, 2030, 2035 and 2050).
- Mitigation actions by 2025, 2030, 2035, 2050.
- Technical and economical parameters of the technology/mitigation options (new technology and baseline technology).
- Key assumptions (e.g. grid emission factor, energy prices, etc.).

GACMO contains different sheets: Start year balance, growth, assumptions, main, technologies

Assumptions

Start Year Energy Balance for Country X

⊿ A	В	С	D	E	F	G	Н		J	K	L	М	N
1 Fossil fuel energy balance in TJ	Mauritius		2021										
2													
3 TJ units	LPG	Gasoline	Jet Fuel	Diesel	HFO	Kerosene and other	Total oil products	Coal	Lignite	Natural Gas	Coke	Petrocoke	Total energy (fossil)
4 Unit	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ
5 Total	3,696	7,557	1,362	8,035	10,380	27	31,056.9	19,121	0	0	0	0	50,178
6 Fossil power plants	0	0	0	37	8925	27	8,989.7	18047	0	0	0	0	27,037
7 FINAL CONSUMPTION	3,696	7,557	1,362	7,998	1,455	0	22,067.2	1,074	0	0	0	0	23,141
8 Industry - steel	0	0	0	0	0	0	0.1	0	0	0	0	0	0
9 Industry - chemical	0	0	0	0	0	0	0.0	0	0	0	0	0	0
10 Industry - non metallic mineral	0	0	0	0	0	0	0.0	0	0	0	0	0	0
11 Industry - food processing and beverag	e 0	0	0	0	0	0	0.0	0	0	0	0	0	0
12 Industry - construction	0	0	0	0	0	0	0.0	0	0	0	0	0	0
13 Industry - mining	0	0	0	0	0	0	0.0	0	0	0	0	0	0
14 Industry - machinery	0	0	0	0	0	0	0.0	0	0	0	0	0	0
15 Industry - non ferrous metals	0	0	0	0	0	0	0.0	0	0	0	0	0	0
16 Industry - paper and pulp	0	0	0	0	0	0	0.0	0	0	0	0	0	0
17 Industry - transport equipment	0	0	0	0	0	0	0.0	0	0	0	0	0	0
18 Industry - textile and leather	0	0	0	0	0	0	0.0	0	0	0	0	0	0
19 Industry - miscellaneous	231	0	0	1261	1311	0	2,802.1	1074	0	0	0	0	3,876
20 Transport - road	118	7557	1362	6659	144	0	15,839.8	0	0	0	0	0	15,840
21 Transport - rail	0	0	0	0	0	0	0.0	0	0	0	0	0	0
22 Transport - domestic air	0	0	0	0	0	0	0.0	0	0	0	0	0	0
23 Transport - navigation	0	0	0	0	0	0	0.0	0	0	0	0	0	0
24 Households	2590	0	0	0	0	0	2,589.9	0	0	0	0	0	2,590
25 Services	757	0	0	0	0	0	756.8	0	0	0	0	0	757
26 Agriculture & Fishery	0	0	0	78	0	0	78.4	0	0	0	0	0	78
Non energy - chemical feedstocs	0	0	0	0	0	0	0.0	0	0	0	0	0	0
28													

Growth rates

Start year:	2015							
Growth from the start year	An	nual % increas	e in the peri	od	% increa	ase from	start yea	r values
Growth and multiplication factors	2015 to 2020	2020 to 2025	2025 to 2030	2030 to 2050	2020	2025	2030	2050
Population growth	0.83%	0.83%	0.83%	0.50%	4%	9%	13%	25%
GDP growth	4.10%	4.10%	4.10%	3.00%	22%	49%	83%	230%
Industry - fuel in steel	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in chemical	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in non metallic mineral	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in food and beverage	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in construction	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in mining	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in machinery	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in non ferrous metals	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in paper and pulp	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in transport equipment	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in textile and leather	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - fuel in miscellaneous	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Industry - electricity consumption	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Transport - fuel in road	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Transport - fuel in rail	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Transport - fuel in air	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Transport - fuel in navigation	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Transport - electricity consumption	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Households - LPG	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Households - Kerosene	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Households - electricity consumption	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Services - fuel	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Services - electricity consumption	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Agriculture - fuel	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Agriculture - electricity consumption	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Non energy - fuel in chemical feedstocs	6.0%	6.0%	6.0%	2.0%	34%	79%	140%	256%
Livestock emissions	3.0%	3.0%	3.0%	1.0%	16%	34%	56%	90%
Rice emissions	3.0%	3.0%	3.0%	1.0%	16%	34%	56%	90%
N2O from agricultural soils	3.0%	3.0%	3.0%	1.0%	16%	34%	56%	90%
Biomass burning	3.0%	3.0%	3.0%	1.0%	16%	34%	56%	90%
Forestry emission	0.0%	0.0%	0.0%	0.0%	0%	0%	0%	0%
Solid waste emissions	0.0%	0.0%	0.0%	0.0%	0%	0%	0%	0%
Liquid waste emissions	0.0%	0.0%	0.0%	0.0%	0%	0%	0%	0%
Industrial processes	0.0%	0.0%	0.0%	0.0%	0%	0%	0%	0%

2030 GHG Balance for Country X

Unit : ktCO2-e	Total	LPG	Gasoline	Jet Fuel	Diesel	Fueloil	Kerosene and other	Total oil products	Coal	Lignite	Gas
Total	33,700.2	1,805.0	7,030.7	137.6	10,456.1	3,587.0	9.0	23,025.5	0.0	0.0	10,674.7
Fossil power plants	12,428.3	227.8	0.0	0.0	72.2	3,283.1	0.0	3,583.2	0.0	0.0	8,845.2
FINAL CONSUMPTION	21,271.8	1,577.2	7,030.7	137.6	10,383.8	303.9	9.0	19,442.3	0.0	0.0	1,829.5
Industry - steel	50.5	5.2	0.0	0.0	8.3	36.9	0.0	50.5	0.0	0.0	0.0
Industry - chemical	12.1	0.0	0.0	0.0	5.6	6.5	0.0	12.1	0.0	0.0	0.0
Industry - non metallic mineral	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Industry - food processing and beverage	332.3	137.1	0.0	0.0	17.1	178.2	0.0	332.3	0.0	0.0	0.0
Industry - construction	158.4	0.0	0.0	0.0	158.4	0.0	0.0	158.4	0.0	0.0	0.0
Industry - mining	2,040.3	0.0	0.0	0.0	2,040.3	0.0	0.0	2,040.3	0.0	0.0	0.0
Industry - machinery	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Industry - non ferrous metals	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Industry - paper and pulp	0.6	0.5	0.0	0.0	0.1	0.0	0.0	0.6	0.0	0.0	0.0
Industry - transport equipment	7.6	0.0	0.0	0.0	7.6	0.0	0.0	7.6	0.0	0.0	0.0
Industry - textile and leather	53.5	0.2	0.0	0.0	3.0	50.3	0.0	53.5	0.0	0.0	0.0
Industry - miscellaneous	417.0	2.0	0.0	0.0	21.2	8.3	0.0	31.5	0.0	0.0	385.5
Transport - road	14,395.0	267.0	6,795.1	0.0	7,332.9	0.0	0.0	14,395.0	0.0	0.0	0.0
Transport - rail	10.8	0.0	0.0	0.0	10.8	0.0	0.0	10.8	0.0	0.0	0.0
Transport - domestic air	137.6	0.0	0.0	137.6	0.0	0.0	0.0	137.6	0.0	0.0	0.0
Transport - navigation	5.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	0.0
Households	1,026.2	1,023.4	0.0	0.0	0.0	0.0	2.8	1,026.2	0.0	0.0	0.0
Services	141.8	141.8	0.0	0.0	0.0	0.0	0.0	141.8	0.0	0.0	0.0
Agriculture & Fishery	486.1	0.0	154.6	0.0	331.6	0.0	0.0	486.1	0.0	0.0	0.0
Energy Industry - Refinery	35.6	0.0	0.0	0.0	0.0	23.8	0.0	23.8	0.0	0.0	11.8
Energy Industry - Other energy industries	1,961.4	0.0	81.0	0.0	442.0	0.0	6.1	529.2	0.0	0.0	1,432.3

Mitigation options in GACMO

- There are 119 pre-defined mitigation options available in GACMO
- The user can select and adjust mitigation option applicable for the country

Annex. Mitigation options available in the GACMO tool

Туре	Reduction option	Sub-type unit
	Rice crop CH4 reduction	Rice crop CH4 red.(1000 ha)
	Zero tillage	1000 ha
	Cover crops	1000 ha
Agriculture	Nitrification inhibitors (1000 ha)	1000 ha
	Covering slurry stores (1 slurry store)	1 slurry store
	Fat supplementation in ruminants diets (%DM fat added	%DM fat added
	Tobacco curing	100 t tobacco/yr
	Rice husk cogeneration plants	1 MW cogeneration
Biomass energy	Biomass power from biomass residues	1 MW CHP plant
	Bagasse power	100 kt sugar cane/year
ccs	CCS plant	1 MW
Cement	Clinker replacement	1000 tonnes cement/day
Coal bed/mine methane	Coal mine methane	10 Mm3 CMM/year
	Efficient residential airconditioning	1000 Airconditioners
	Efficient lighting with CFLs	1000 Bulps
	Efficient lighting with LEDs	1000 Bulps
	Efficient lighting with LEDs replacing CFL	1000 Bulps
	Efficient wood stoves	1000 stoves
EE households	Efficient charcoal stoves	1000 stoves
	LPG stoves replacing wood stoves	1000 stoves
	Efficient electric stoves	1000 stoves
	Induction based cooking	1000 stoves
	New passive home	1000 new homes
	Efficient refrigerators	1000 refrigerators

Example of the calculations in the GACMO model in the Country X

 The GACMO model contain sheets like this for the each GHG reduction options

Solar PVs, large grid, 1 MW - 2020								
Reduction	Reference	Increase						
Option	Option	(RedRef.)						
1,500,000								
20								
176,189		176,189						
15,000		15,000						
	365,000	-365,000						
191,189	365,000	-173,811						
•								
Tons	Tons	Reduction						
	840	840						
0	840	840						
		-207.0						
	•	•						
	Reduction Option 1,500,000 20 176,189 15,000 191,189	Reduction Reference Option Option 1,500,000 20 176,189 15,000 365,000 191,189 365,000						

General inputs:		
Discount rate	10%	
Reference electricity price	0.20	US\$/kWh
CO2-eq. emission coefficient	0.46	tCO2/MWh

Activity: Solar PV		
Size of solar PV	1.0	MW
Investment in Activity	1500	US\$/kW
Daily insolation	5	hours
Annual capacity factor	1825	Full time hours
Efficiency factor	1	
O&M	1.0%	Of investment
Electricity production	1825	MWh
Cost of electricity produced	0.105	US\$/kWh
Reference option: No solar PVs		
Electricity production	1825	MWh

Notes:

This calculation is made for a country with an avarage daily insolation of 5 hours.

GACMO summary table for the 22 GHG mitigation options in the Maldives

Mitigation options	Abatement	Unit Type	Emission	Units	Investment	Annualized	Emission redu	ction in 2020
	costs		reduction	penetrating		costs	Per option	Cumulative
	US\$/tonCO ₂		t CO2/unit	in 2020	MUS\$	MUS\$/year	kt/year	fracion
LED tubes for public sector	-784	1 light tube replaced	0.015	70,000	0.0	-0.8	1.1	0.1%
Better maintenance of motor bikes	-413	All motor bikes	24304	1	0.0	-10.0	24.3	1.3%
Air conditioning at resorts	-398	1 Aircondinioner	0.87	36,467	4.7	-12.7	31.8	2.9%
Cooling new service buildings	-369	1 m2	0.046	270,336	1.8	-4.6	12.4	3.5%
Solar water heater	-323	1 unit	24	102	0.7	-0.8	2.5	3.7%
Efficient air conditioning	-313	1 Airconditioner	1.19	74,186	9.6	-27.7	88.5	8.2%
LED tubes for street light	-292	2200 street lights	1505	1.48	0.1	-0.6	2.2	8.3%
Upgrade of system efficiencies	-260	All eligible Islands	43199	1	61.1	-11.2	43.2	10.5%
PVs outer islands	-252	1 kW	1.22	12,100	42.4	-3.7	14.7	11.2%
Regional waste-to-energy projects	-228	100 ton/day of waste	9535	1	10.4	-2.2	9.5	11.7%
PVs with Net Meters	-189	1 kW	1.13	10,500	42.0	-2.2	11.9	12.3%
Energy efficient refrigerators	-158	1 refrigerator	0.51	82,823	41.2	-6.6	42.0	14.4%
PVs Malé Region (existing plans)	-133	1 kW	1.05	15,000	45.0	-2.1	15.8	15.2%
PVs Malé Region (additional options)	-133	1 kW	1.05	15,000	45.0	-2.1	15.8	16.0%
Efficient water pumping	-117	1 household	0.10	72,470	14.5	-0.9	7.6	16.4%
PVs on resorts	-108	1 kW	1.22	47,815	167.4	-6.3	58.2	19.4%
20 MW wind power & 25 MW LNG	-105	45 MW	26502	1	97.3	-2.8	26.5	20.7%
Thilafushi waste-to-energy project	-68	A 4 MW plant	23061	1	57.8	-1.6	23.1	21.9%
PVs with storage at small islands	-52	1 kW	1.2	29,000	167.1	-1.8	35.3	23.7%
LEDs for domestic lighting	199	All domestic bulps	8467	1	42.4	1.7	8.5	24.1%
Biodiesel 20% blend	336	20% blend	213000	1	0.0	71.6	213.0	34.9%
Bioethanol 15% blend	337	15% blend	14637	1	0.0	4.9	14.6	35.7%
			Totals	Million US\$	850.3	-22.6	702.4	35.7%

Total baseline emission in 2020: 1968 ktCO2-eq.

The type of mitigation options used in GACMO are similar to the ones in the CDMPipeline:

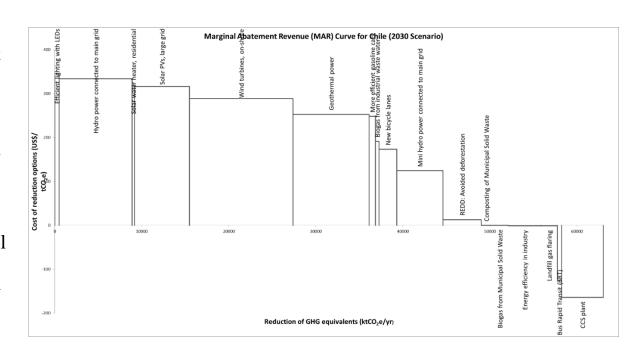
GACMO contains a sheet for each type, which then contains several sub-types

Afforestation
Agriculture
Biomass energy
Cement
CO2 usage
Coal bed/mine methane
Energy distribution
EE households
EE industry
EE own generation
EE service
EE supply side
Fossil fuel switch
Forestry
Fugitive
Geothermal
HFCs, PFCs and SF6
Hydro
Landfill gas
Methane avoidance
Mixed renewables
N2O
Solar
Tidal
Transport
Wind

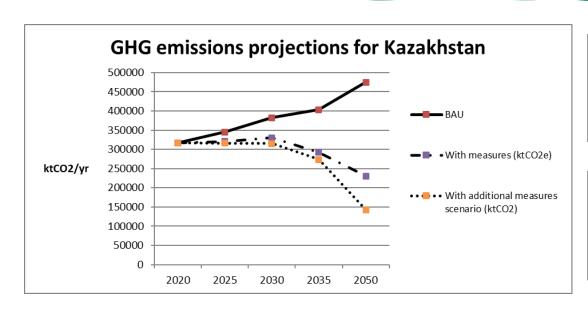
Mitigation options included/excluded in the MAR curve for Chile

Options excluded in MAR Curve						
Reduction option	US\$/tonCO2	Emission reduction in 2020 per option kt/year				
New natural gas power plant	2546.69	861.00				
Cogeneration in industry	2371.03	620.50				
Shifting freight transport from road to rail (1000	1562.82	30.17				
Efficient electric motors	296.40	50.16				
Efficient residential airconditioning	295.26	32.13				
Efficient office lighting with LEDs	255.18	45.74				
Zero tillage	198.80	42.86				
Electric cars	118.82	165.27				
Efficient refrigerators	32.65	102.94				
Assisted forest regeneration	4.81	18.33				
Reforestation with Silvopasture	0.87	36.67				
Biogas at rural farms using non-renewable fue	-2.84	112.74				
Nitrification inhibitors (1000 ha)	-67.69	102.70				
Fat supplementation in ruminants diets (%DM	-80.50	0.77				
Efficient electric grids	-185.27	-6863.98				
Solar tower CSP, with storage	-374.07	3567.31				
Electric trucks	-615.93	6783.28				
Electric 12m buses	-965.37	7641.60				

Options included in MAR Curve						
Reduction option	US\$/tonCO2	Emission reduction in 2030 per option kt/year				
Efficient lighting with LEDs	345.66	504.25				
Hydro power connected to main grid	333.82	8377.52				
Solar water heater, residential	319.16	289.72				
Solar PVs, large grid	316.19	6298.99				
Wind turbines, on-shore	288.73	11900.00				
Geothermal power	252.54	8753.50				
More efficient gasoline cars	248.36	727.85				
Biogas from industrial waste water	191.45	393.39				
New bicycle lanes	173.53	2059.75				
Mini hydro power connected to main grid	124.47	5298.00				
REDD: Avoided deforestation	12.92	4400.00				
Composting of Municipal Solid Waste	0.01	1158.30				
Biogas from Municipal Solid Waste	-0.26	1949.88				
Energy efficiency in industry	-1.17	3759.38				
Landfill gas flaring	-1.28	1866.23				
Bus Rapid Transit (BRT)	-125.30	493.88				
CCS plant	-164.50	4811.00				


Threshold for smallest value on x-axis (ktCO2e/yr)	200
Threshold for smallest value on y-axis (US\$/ktCO2e)	-200
Threshold for largest value on y-axis (US\$/ktCO2e)	800

Results of GACMO Marginal Abatement Revenue (MAR) curve for Chile


Marginal Abatement Cost Curve (MACC) or Marginal Abatement Revenue Curve (MARC) can be created.

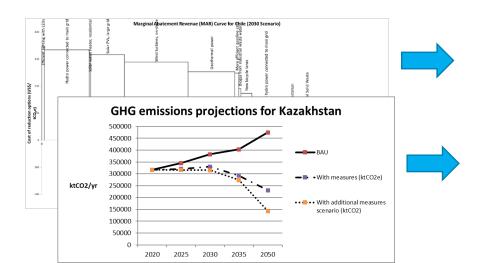
A MACC/MARC presents the costs or savings of the mitigation actions and expected emissions reductions from those mitigation actions.

MACC/MARC can be useful tool to select mitigation actions appropriate for the country based on the emissions reductions and costs/revenues.

Results of GACMO: GHG emissions projections in BAU and Mitigation scenario

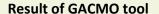
Sectoral split of BAU scenario emissions								
ktCO2e/year	2020	2025	2030	2035	2050			
Total	316,859	345,515	382,828	403,232	475,238			
Power	105,019	117,325	131,566	141,184	175,026			
Industry	93,494	103,701	115,625	123,094	150,378			
Transport	22,296	27,297	33,420	34,269	36,946			
Households	29,921	30,484	31,058	32,397	36,771			
Services	7,652	7,796	7,943	8,285	9,404			
Agriculture & Fishery	42,778	47,851	53,525	54,755	58,616			
Forestry	8,375	3,178	1,206	1,037	660			
Waste	7,323	7,883	8,486	8,211	7,437			

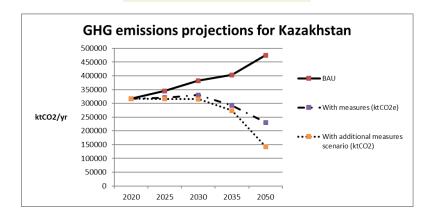
Sectoral split of mitigation scenario emissions							
ktCO2e/year	2020	2025	2030	2035	2050		
Total	316,859	320,591	330,537	292,387	230,567		
Power	105,019	104,000	109,416	79,289	21,053		
Industry	93,494	103,701	115,625	115,996	139,661		
Transport	22,296	27,066	32,602	29,728	23,083		
Households	29,921	30,484	19,456	14,571	-3,848		
Services	7,652	7,796	2,018	2,292	7,523		
Agriculture & Fishery	42,778	42,374	53,525	54,755	58,616		
Forestry	8,375	-2,689	-10,528	-12,310	-22,733		
Waste	7,323	7,859	8,422	8,066	7,212		


How can
GACMO be used
for NDC
tracking?

GACMO can be useful for identifying target level for NDC indicator

GACMO tool can be useful to identify level of GHG emission reduction target, as well as sectoral targets (capacity of renewable energy, hectares of reforestation, number of electric vehicles etc.)


CTF Table 1. Description of selected indicator



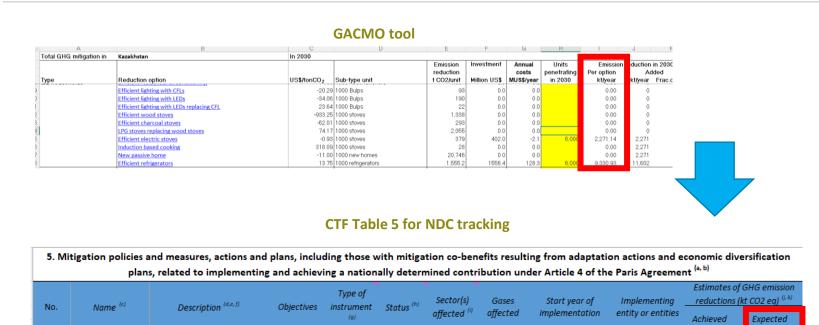
CTF Table 2. Definitions needed to understand NDC

CTF Table 3. Methodologies and accounting approaches – consistency with Article 4, paragraphs 13 and 14, of the Paris Agreement and with decision 4/CMA.1

GHG emissions projections from GACMO tool can be used to fill in CTF Tables for NDC tracking

CTF Table 7. Information on projections of greenhouse gas emissions and removals under a 'with measures' scenario

CTF Table 8. Information on projections of greenhouse gas emissions and removals under a 'with additional measures' scenario



CTF Table 9. Information on projections of greenhouse gas emissions and removals under a 'without measures' scenario

CTF Table 10. Projections of key indicators

GACMO tool can be used to estimate expected GHG emissions reduction by mitigation policies and measures

GACMO tool can be used for tracking achieved GHG emissions reduction by mitigation policies and measures

GACMO tool Z Total Accumulated Total Total 3 4 5 GHG Accumulated Implemented mitigation options external internal 2022 2023 2024 2025 2028 2029 2031 2032 2033 2034 2035 reduction finance finance kt/CO2e/yr Million US\$ 7 8 9 10 0 11 12 13 14 CTF Table 5 for NDC tracking 5. Mitigation policies and measures, actions and plans, including those with mitigation co-benefits resulting from adaptation actions and economic diversification plans, related to implementing and achieving a nationally determined contribution under Article 4 of the Paris Agreement (a, b) Estimates of GHG emission Type of reductions (kt CO2 eq) (j, k) *Implementing* Start year of Description (d,e,f) Name (c) No. Objectives instrument implementation entity or entities Achieved Expected

Conclusion

GACMO is a **simple tool, easily adaptable** to a specific national context used to make analysis of mitigation options and their effects in terms of GHG emissions reduction in the context of NDC preparation or update

The GACMO calculations are transparent and easy to follow, in line with the methodologies established by the IPCC and CDM

GACMO allows to establish a Business As Usual (BAU) project 2025/2030/2050


GACMO allows to establish a mitigation scenario projection (percentage of reduction of GHG emissions in comparison with BAU)

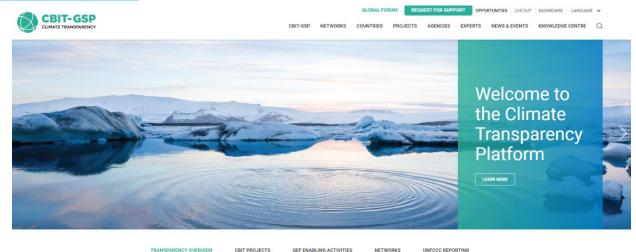
GACMO allows you to calculate the reduction of GHG and the cost related to each mitigation option compared to a technology used as a reference

GACMO allows to "play" with the scale of application of any mitigation option to reach a global reduction target

GACMO offers a clear description of the total reduction of GHG emissions, total inversion and total annual cost

The Capacity-building Initiative for Transparency - Global Support Programme (CBIT-GSP)

CBIT GSP


CBIT-GSP Activities in the Anglophone Caribbean

- Experience-sharing webinar on "Institutional Arrangements for Transparency in Latin America and the Caribbean: The Experience of Antigua and Barbuda & Costa Rica", which is jointly organized by the CBIT-GSP, UNFCCC and UNEP ROLAC, on 10-11:30am, 31 May 2023 https://www.cbitplatform.org/events/institutional-arrangements-transparency-latin-america-caribbean-experience-antigua-barbuda
- In-person Regional Workshop for the Anglophone Caribbean and the Spanish-speaking LAC in Panama, in the context of the LAC Climate Week (date tbc)
- In-country support activities in progress
 Countries can request support for targeted capacity through a
 dedicated

CBIT-GSP Inception and Launch of the Climate Transparency Platform

- Date: 9 June 2023, 11:00 13:30
- Location: The German Institute of Development and Sustainability (IDOS), Tulpenfeld 6, 53113
 Bonn
- Registration is required for in-person and virtual participation: https://forms.gle/d8croGrUksPqpS398

Thank you Any questions?

For GACMO:

Dr Aiymgul KERIMRAY

Mitigation Specialist

aiymgul.kerimray@un.org

For CBIT-GSP:

Fatima-Zahra TAIBI

Global CBIT-GSP Coordinator

fatima-zahra.taibi@un.org

Susanne KONRAD

CBIT-GSP Project Officer

susanne.konrad@un.org

