On-Road Mobile Sources (Road Transport)

Data Processor & Emissions Calculator Tool

On Road Mobile Sources Workcrew, MRV Hub, GHGMI June 2023

Agenda

- 1. Problem Statement in the Region
- 2. What are on-road mobile sources?
- 3. Technical background on onroad GHG emissions
- 4. Tool Demonstration

Problem Statement

Member countries of Caribbean Cooperative MRV Hub (MRV Hub) continue to face both *technical* and *institutional* challenges at each step of the GHG emission inventory process as well as tracking quantitatively NDC implementation at the sectoral and policy level.

Tool Developers: On-Road Mobile Sources Work Crew, MRV Hub

- A team of experts from the Hub member countries
- Work together to build a system to produce annual estimates for GHG emissions from on-road mobile sources for Hub member countries
- Key category and focus of NDC for all Caribbean countries
- To meet national data needs and UNFCC reporting requirements :
 - National environmental and energy policies
 - National Communications (NC)
 - Nationally determined contributions (NDCs)
 - Biennial Update Reports (BUR) and Biennial Transparency Reports (BTRs)

Key Categories

- Passenger cars
- Light-duty trucks
- Heavy-duty
 vehicles (busses
 & tractor trailers)
- Motorcycles & mopeds
- Create national GHG inventory estimates and documentation with support of CCMRVH experts

What are on-road mobile sources?

- Passenger cars
- Light-duty trucks
- Heavy-duty vehicles (busses & tractor trailers)
- Motorcycles & mopeds
- Excludes:
 - Rail
 Waterborne
 off-road

Mobile source emissions?

CO2 emissions are mainly determined by fuel carbon content from fuel consumption

CH₄ and N₂O also emitted from combustion

Comprise a small proportion of GHG emissions (~1%) For old petrol vehicles can be larger (~5%) of GHG emissions

Address biomass (non-fossil) fuels (e.g., ethanol, biodiesel)

Fuel Consumption

- Most accurate method for CO₂ emissions
- Use available import data along with any other fuel sales or tax records
- Combine with vehicle data (e.g., registration) to estimate annual consumption by vehicle class
- Use vehicle fleet data where available
- Potentially allocate "residual" consumption to off-road

CO₂ Methodology

- Assume full oxidation of carbon in fuel
- Seek data on carbon content from supplier fuel sampling and analysis
- Validate and/or allocate consumption to vehicle categories using kilometers traveled estimates

- CH₄ and N₂O emissions depend on combustion technology type and control technologies (e.g., catalytic converter)
- Calculated as a function of vehicle kilometers traveled
- Additional data
 - \circ Model year
 - Control technology
 - Fuel economy
 - Vehicle scrappage

Coordinate and support ongoing work on air pollution estimation

This tool aims to provide users with a flexible way to aggregate vehicle and fuel data to make simple, documented assumptions about the total emissions from the vehicle population.

The *total* emissions from gasoline and diesel are dependent only on the fuel data. The breakdown of emissions by vehicle type is what this tool provides.

Assumptions Made by this Tool:

- Gasoline and diesel vehicles are the only ones counted. Vehicles without a fuel type are given a fuel type estimation based on their classification, and vehicles with a different fuel type are excluded from the count.
- All vehicles consume fuel equally (within the pools of diesel and gasoline vehicles)
- Any vehicle that does not have a manufacture year is assumed to be built after 1995.

	Consumption	EMISSIONS			EMISSIONS		
2016		CO ₂	CH ₄	N_2O	CO ₂	CH4	N ₂ O
	(TJ)		(mt)			(mt CO2e)	
b. Road transportation ⁽¹¹⁾	1226.92	88334	7.18	6.89	88334	213.94	1882.09
Gasoline	970.11	69044	6.16	5.88	69044	183.69	1604.92
Diesel oil	256.80	19290	1.02	1.02	19290	30.26	277.17
i. Cars	531.68	38055	3.19	2.99	38055	95.02	815.62
Gasoline	420.09	29636	2.75	2.54	29636	81.82	694.65
Diesel oil	111.58	8419	0.44	0.44	8419	13.21	120.97
ii. Light duty trucks	196.67	14203	1.05	1.05	14203	31.24	286.63
Gasoline	132.16	9334	0.79	0.79	9334	23.60	216.66
Diesel oil	64.51	4869	0.26	0.26	4869	7.64	69.97
iii. Heavy duty trucks and buses	464.43	33446	2.65	2.63	33446	78.95	719.06
Gasoline	384.60	27486	2.34	2.32	27486	69.60	633.42
Diesel oil	79.82	5961	0.31	0.31	5961	9.35	85.64
iv. Motorcycles	7.38	588	0.07	0.05	588	2.17	13.66
Gasoline	7.12	578	0.07	0.05	578	2.16	13.51
Diesel oil	0.26	10	0.00	0.00	10	0.02	0.15
v. Offroad Vehicles	26.76	2042	0.22	0.17	2042	6.56	47.12
Gasoline	26.14	2012	0.22	0.17	2012	6.51	46.69
Diesel oil	0.63	30	0.00	0.00	30	0.05	0.44

The user has the option to change emission factors (kg/TJ)

Add input data for fuel and vehicles

Select year, assign IPCC Categories and fuel type estimates

Check Emission Factors

Save Data

The tool produces a table of fuel consumption, total emissions, and emissions in CO2e, broken down by:

- Fuel type, diesel and gasoline
- IPCC Vehicle type
- CO2, CH4, and N2O

The user can then save the data in the same file, to be shown via shared screen.

	Consumption	EMISSIONS			EMISSIONS		
2016		CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O
	(TJ)		(mt)			(mt CO2e)	
b. Road transportation ⁽¹¹⁾	1226.92	88334	7.18	6.89	88334	213.94	1882.09
Gasoline	970.11	69044	6.16	5.88	69044	183.69	1604.92
Diesel oil	256.80	19290	1.02	1.02	19290	30.26	277.17
i. Cars	531.68	38055	3.19	2.99	38055	95.02	815.62
Gasoline	420.09	29636	2.75	2.54	29636	81.82	694.65
Diesel oil	111.58	8419	0.44	0.44	8419	13.21	120.97
ii. Light duty trucks	196.67	14203	1.05	1.05	14203	31.24	286.63
Gasoline	132.16	9334	0.79	0.79	9334	23.60	216.66
Diesel oil	64.51	4869	0.26	0.26	4869	7.64	69.97
iii. Heavy duty trucks and buses	464.43	33446	2.65	2.63	33446	78.95	719.06
Gasoline	384.60	27486	2.34	2.32	27486	69.60	633.42
Diesel oil	79.82	5961	0.31	0.31	5961	9.35	85.64
iv. Motorcycles	7.38	588	0.07	0.05	588	2.17	13.66
Gasoline	7.12	578	0.07	0.05	578	2.16	13.51
Diesel oil	0.26	10	0.00	0.00	10	0.02	0.15
v. Offroad Vehicles	26.76	2042	0.22	0.17	2042	6.56	47.12
Gasoline	26.14	2012	0.22	0.17	2012	6.51	46.69
Diesel oil	0.63	30	0.00	0.00	30	0.05	0.44

Screen Share Presentation and Questions

For more information contact:

Ms. Ahyana Bowen Work Crews Coordinator Ahyana.bowen@mrvhub.org

&

Brittany Meighan On-Road Mobile Sources Work Crew Lead brittany.meighan@mrvhub.org